Two Main Approaches to Optical Transmission

Why go to the trouble of using an external modulator?

Table 7.1 Maximum (unrepeatered) transmission distances over an SMF at $1.55 \,\mu\text{m}$ for various transmitter types based on Eqs. (7.19), (7.18), and (7.16) with $D = 17 \,\text{ps/(nm \cdot km)}$.

Transmitter Type	2.5 Gb/s	10 Gb/s
Fabry-Perot laser ($\Delta \lambda = 3 \text{ nm}$)	4 km	1 km
Distributed feedback laser ($\alpha = 4$)	230 km	15 km
External modulator ($\alpha = 0$)	960 km	60 km

From Broadband circuits for optical fiber communication, Eduard Säckinger, Wiley 2005

An external modulator offers extended transmission distance

More Detailed Limits to Transmission Distance

from Broadband Circuits for Optical Fiber Communication, Eduard Säckinger, Wiley 2005

- Limits Due to Chromatic Dispersion FP = Fabry Perot Laser
- DFB = Distributed Feedback Laser
- EM = External Modulation OPTI 500, Spring 2012, Lecture 8, Optical Transmitters

<u>Limits due to Polarization Mode Dispersion</u>

- PMD = Polarization Mode Dispersion Limits due to Optical Attenuation in Fiber
- p-i-n = Photodetector
- OA = Optically Pre-Amplified Photodetector

The Inside of an Optical Transmitter

- The transmitter includes components for control of temperature and average power
- A transmitter often contains circuitry for re-shaping and retiming data

Basic Laser/Modulator Drive Circuitry

Why do we use current steering?

 A constant current to the ground through the current source avoids current transients due to parasitic capacitances and inductances

Why do we use differential input?

 The differential design is insensitive to common-mode noise and avoids the need for an input reference voltage

Drive Circuitry with an Additional Predriver

 The predriver conditions the signals for input to transistors Q₁ and Q₂

Laser Load for the Drive Circuitry

• The resistor R_s, dampens current oscillations due to parasitic inductances in the circuitry

Modulator Load for Drive Circuitry

- Load is a transmission line
- Modulator is AC coupled to the drive circuitry by inductor RFC₁ (RF Choke 1) and capacitor C1 (the combination is know as a "Bias T")
- A Bias voltage V_b is DC coupled to the modulator by RFC₂
- The drive signal is terminated by the resistor R_p
- The capacitor C₂ blocks DC current through the modulator